Формула для нахождения условной вероятности. Условная вероятность

Лекция 4

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень маленькую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Все зависит от конкретной задачи. Если вероятность нераскрытия парашюта 0,01, то такой парашют применять нельзя. Если электричка опоздает с вероятностью 0,01 то можно быть уверенным что она прибудет вовремя.

Достаточно малую вероятность, при которой в данной задаче событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости от 0,01 до 0,05.

Если случайное событие имеет вероятность очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит.

Условная вероятность

Произведением двух событий A и B называют событие АВ, состоящее в совместном появлении (совме­щении) этих событий. Например, если A - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событ ий. Например, если A , B , C - появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то ABC - выпадение «герба» во всех трех испытаниях.

Во введении случайное событие определено как событие, которое при осуществлении совокупности усло­вий S может произойти или не произойти.

Если при вы­числении вероятности события никаких других ограни­чений, кроме условий S, не налагается, то такую вероят­ность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной.

Например, часто вычисляют вероятность собы­тия B при дополнительном условии, что произошло со­бытие A . Безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.

Условной вероятностью Р A (В) или называют вероятность события B, вычисленную в предположении, что событие A уже наступило

Условная вероятность вычисляется по формуле

Эту формулу можно доказать исходя из классического определения вероятности.

Пример 3. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероят­ность появления белого шара при втором испытании (событие В ), если при первом испытании был извлечен черный шар (событие А ).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность Р А (В ) = 3/5.

Этот же результат можно получить по формуле

Р A (В ) =P (АВ )/P (А) (P (А ) > 0).

Действительно, вероятность появления белого шара при первом ис­пытании


P (A ) = 3/6 =1/2.

Найдем вероятность P (АВ ) того, что в первом испытании по­явится черный шар, а во втором - белый по формуле (3.1). Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений = 6 5 = 30. Из этого числа исходов событию АВ благоприятствуют 3 3=9 исходов. Следовательно, P (АВ ) =9/30 = 3/10.

Условная вероятность P А (В ) =P (АВ )/Р (А ) = (3/10)/(1/2) = 3/5. Получен прежний результат.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, чтостудент вытащил выученный билет: А = (1,...,5,26,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B . Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р (А /В )). Таким образом, решение задачи определяется формулой

Р (А /В ) = P (А ÇВ ) /Р (B ) (2)

Р (А /В ) называется условной вероятностью события A при условии, что событие В произошло . Формулу (2) можно рассматривать, как определение условной вероятности . Эту же формулу можно переписать в виде

P (А ÇВ ) = Р (А /В )Р (B )(3)

Формула (3) называется формулой умножения вероятностей или теоремой умножения вероятностей, а условная вероятность Р (А /В ) здесь должна восприниматься просто по смыслу.

Пример 2 . Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда событие, заключающееся в том, что первый шар будет белым, а второй - черным. P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P (X ) = 7/10, по формуле умножения вероятностей получаем: P () = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А /В )=Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ÇВ ) = Р (А ) Р (B )

Докажите самостоятельно, что если А и В - независимые события, то и тоже являются независимыми событиями.

Пример 3 . Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 = 1/216.

Пример 4 . Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1–1–2”, “1–2–1”, “2–1–1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216 = 1/72.



Пример 5 . Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р (А ) = 4/32 = 1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р (А/В ). Очевидно, что Р (А ÇВ ) = 1/32, и Р (В ) = 8/32. Тогда Р (А/В ) = Р (А ÇВ )/ Р (В ) = 1/8, то есть Р (А ) = Р (А/В ). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р (А ÇС ) = Р (А ) = 1/8. Р (С ) = 28/32 = 7/8. Отсюда получаем Р (А/С ) = 1/7, и это не равно величине Р (А ), следовательно, события А и С зависимы.

Пример 6 . Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P (А ÇВ ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в задаче с шарами положить количество белых и черных шаров равным соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие заключается в том, что все трое не попали в мишень . Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р() = 0,1×0,2×0,3 = 0,006. Тогда Р(А) = 1 – Р() = 0,994.

2. При включении двигатель начинает работать с вероятностью р . а) Найти вероятность того, что двигатель начнёт работать со второго включения.

б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А ). Это происходит с вероятностью 1 – р . При втором включении двигатель запустится (событие В ) с вероятностью р . Нас интересует вероятность события А ÇВ . Из условия задачи можно понять, что события А и В независимы. Отсюда P (А ÇВ ) = р (1 – р ).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, ни при втором включении. Вероятность этого противоположного события равна (1 – р ) 2 . Отсюда вероятность интересующего нас события равна 1 – (1 – р ) 2 .

3 . В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети – мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р (В/А ). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P (А ÇВ ). В нашем случае событие А является следствием события В , поэтому P (А ÇВ ) = Р (В ) (смотри объяснение к теме 2). По условию задачи Р (В ) = (1/2) 4 = 1/16. Чтобы вычислить Р (А ), заметим, что событие состоит в том, что все дети в семье –девочки. Очевидно, что Р () = (1/2) 4 = 1/16. Тогда Р (А ) = 1 – Р () = 15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р (В /А ) = P (А ÇВ )/Р (А ). В результате получается Р (В /А ) = (1/16)/(15/16) = 1/15.

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4 . В урне семь белых и три чёрных шара. Без возвращения извлекаются три шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует возможных исходов. Отсюда Р (А ÇВ ) = . Чтобы вычислить вероятность Р (В ), заметим, что состоит в том, что все извлечённые шары белые, и Р () = . Искомая вероятность равна ()/(1 – ) = 63/85.

5. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А - событие, заключающееся в том, что студент сдал экзамен;

В - событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р (В ) =20/25 = 4/5. Теперь необходимо определить вероятность Р (А ÇВ ). Из двадцати пяти вопросов можно составить различных билетов, содержащих четыре вопроса. Все билеты, выбор которых удовлетворял бы и событию А, и событию В , должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5билетов). Отсюда получаем, что

Р (А ÇВ ) =

Осталось только найти искомую вероятность р (А/В):

Р (А/В) =

Задачи для самостоятельного решения.

1) . Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

2) . Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а) с возвращением; б) без возвращения.

3) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

4) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем – 0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух – с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

5) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

Ответы. 1)1/4; 2) а) 0,216; б) 1/6; 3) а) 0,398; б) 0,902; 4) 0,594; 5) а) 0,5; б) 0,3.

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .

Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .

Замечание. В основе определения вероятности события лежит некоторая совокупность условий . Если никаких ограничений, кроме условий при вычислении вероятности не налагается, то такие вероятности называются безусловными . Однако в ряде случаев приходится рассматривать вероятности событий при дополнительном условии, что произошло некоторое событие В.

Определение 1. Вероятность события А , вычисленная при условии, что имело место другое событие В , называется условной вероятностью события А и обозначается .

Замечание. Строго говоря, безусловные вероятности также являются условными, так как исходным моментом построенной теории было предположение о существовании некоторого неизменного комплекса условий .

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие А), если известно, что эта сумма есть чётное число (событие В)?

Решение. Построить пространство исходов, найти безусловную вероятность и условную вероятность .

Пример 2. Из колоды карт последовательно вынули 2 карты.

Найти :

а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта вышла вначале);

б) условную вероятность того, что вторая карта будет тузом, если первоначально был вынут туз.

Решение. а) Обозначим А - событие, состоящее в появлении туза на втором месте, В - событие, состоящее в появлении туза на первом месте. Событии А можно представить в виде . В силу несовместности событий и имеем . Общее число случаев вынуть из колоды в 36 карт 2 карты (выборка без повторений с учетом порядка!). Событию будут благоприятны исхода, а событию будут благоприятны исхода. Тогда .

б) Если первая вынутая карта - туз, то в колоде осталось 35 карт и среди них только 3 туза. Следовательно .

Общее решение задачи о нахождении условной вероятности для классического определения вероятности:

Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Если событий В произошло, то это означает, что наступило одно из событий , благоприятных событию В. При этом условии событию А благоприятствуют r и только r событий , благоприятных АВ. Таким образом . (1)

Аналогично, если , то . (1’)

Если В (соответственно, А) есть невозможное событие, то равенство (1) (соответственно (1’)) теряет смысл.

При каждое из равенств (1) и (1’) равносильно так называемой теореме умножения вероятностей.

Теорема умножения вероятностей. Вероятность произведения событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло: (2).


Доказательство теоремы умножения вероятностей для классической схемы случаев . Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Тогда , , а (из общего решения задачи о нахождении условной вероятности). Подставляя полученные значения вероятностей в формулу (2), получим тождество. Теорема доказана.

Замечание. Теорема умножения справедлива и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .

Следствие. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 3. В ящике находится 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в ящик. Найти вероятность того, что при первом испытании появится белый шар, при втором - черный и при третьем - синий.

Решение. Пусть событие А - при первом испытании появится белый шар, событие В - при втором испытании появится черный шар; событие С - при третьем испытании появится синий шар. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, то есть условная вероятность . Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором черный: . Так как события А, В и С совместны, то искомая вероятность

Определение 2. Событие А называется независимым от события В , если вероятность события А не зависит от того, произошло событие В или нет:

(наступление события В не меняет вероятности события А).

Определение 3. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Замечание 1. Если событие А независимо от события В, то в силу (2) имеет место равенство Отсюда следует, что , (4)

Т.е. событие В также независимо от А. Таким образом, при сделанном предположении свойство независимости событий взаимно.

Замечание 2. Понятие независимости событий играет значительную роль в теории вероятностей и её приложениях. В практических вопросах для определения независимости событий редко обращаются к выполнению равенств (3) и (4). Обычно для этого пользуются интуитивными соображениями, основанными на опыте (пример с монетой и др.). Для независимых событий теорема умножения вероятностей имеет наиболее простой вид.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Замечание 3. Если независимость событий определить посредством равенства , то это определение верно всегда, в том числе и тогда, когда и .

Определение 4. События , , …, называются независимыми в совокупности , если для любого события из их числа и произвольных , , …, взаимно независимы.

Замечание 4. В силу замечания 3 это определение эквивалентно следующему.

Определение 4. При любых и .

Замечание 5. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.

Пример. Грани тетраэдра окрашены: 1-я - в красный цвет, 2-я - в зелёный, 3-я - в синий, 4-я - во все эти 4 цвета (АВС). Легко видеть, что вероятность того, что грань, на которую упадёт тетраэдр при бросании, имеет красный цвет, равна 0,5: граней 4, 2 из них имеют в окраске красный цвет. Тогда . Аналогично можно подсчитать, что

Таким образом, события А, В, С попарно независимы. Однако, если осуществились события В и С вместе, то и осуществилось событие А, т.е. . Следовательно, события А, В и С в совокупности зависимы.

Обобщение теоремы умножения вероятностей на случай произвольного конечного числа независимых событий: .

Пример 4. Вероятность того, что стрелок при одном выстреле попадет в мишень, равна . Стрелок произвел три выстрела. Найти вероятность того, что он попал три раза.

Решение. Пусть событие А - стрелок попал в мишень при первом выстреле, событие В - стрелок попал в мишень при втором выстреле; событие С - стрелок попал в мишень при третьем выстреле. Вероятности этих событий по условию равны между собой: . Так как вероятность попадания в цель при каждом из выстрелов не зависит от результата остальных выстрелов, то все три события независимы в совокупности, тогда .

Следствие. (Теорема о вероятности появления хотя бы одного из совокупности независимых событий). Вероятность появления хотя бы одного из совокупности независимых событий А А